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1. Phys.: Condens. Matter 6 (1994)~3443:3452. Printed in the UK 

Coherent electron Compton scattering in crystals 

Alfred Exner, Helmut Kohlt, Peter Schattschneider and Peter Jonas 
Institut @r Angewandte und Technische Physik. Technische Universit@t Wien, Wiedner 
HauptsVaBe 8-10, A-1040 Wien, Austria 

h i v e d  21 December 1993 

Abstract. An expression for the double differential cross section for electron Compton scattering 
with emphasis on caherent scattering in a crystal is derived. The resulting expression is evaluated 
for two beam conditions neglecting absorption. It is shown for this specid case that the influence 
of coherent effeck fors soles is too small lo be delected in the resulting Compton profiles. 

1. Introduction 

The momentum density distribution of electrons in solids can be probed by a Compton 
scattering experiment, in which the energy shift of an inelastically scattered x-ray is 
measured. More recently it has been demonstrated that equivalent results can be obtained in 
a transmission electron microscope by determining the energy loss of fast incident electrons, 
which have been scattered into large angles (Jonas and Schattschneider 1993a, b). Focusing 
the electron beam it is even possible to obtain the anisotropical shape of the Compton profile 
for small crystallites, which are only about 1 pm in extension. 

For the case of scattering in a crystal, however, we have to account for the fact that 
an incident electron passing through the specimen can no longer be described by a plane 
wave, but is represented by a sum of Bloch waves, leading to coherent scattering effects. 
In section 2 we derive an expression for the Compton scattering cross section treating 
the initial electron wavefunction as a sum of Bloch waves. For the sake of simplicity, 
absorption will be neglected. Section 4 presents the analytical evaluation of this expression 
in a one-electron approximation using silicon 3s wavefunctions. The impact of coherence 
upon electron Compton scattering experiments will be discussed in section 5 for a two-beam 
case. 

2. The mixed dynamic form factor 

According to Bloch's theorem the steady state solution of the Schrodinger equation 
for an electron propagating in a periodic medium is a superposition of Bloch waves 
(Metherell 1973) 
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where the sum is taken over all possible reciprocal lattice vectors g and all degenerate Bloch 
waves ku). We intend to investigate the scattering of an incident electron represented by 
Bloch waves into a free planewave state 

Y ~ ( T )  = eikbr. 

The transition matrix element is then given by 

This expression is valid for weak interactions so that the state vectors can be factorized 
since exchange effects are negligible; la) = IYa) @ li), 16) = IYb) @ I f )  are the initial, 
resp. the final states of the combined crysral-probe electron system, and li), If} the initial, 
rap. final state of the crystal. The double differential cross section is proportional to 

We obtain 

Here we ha\-e introduced the mixed dynamic form factor S(K := Qjg, K' := Qj,d, E) 
which is formally defined as (Kohl and Rose 1985) 

Note that fr  = 1 since we have used atomic units. We have used the integral representation 
of the 8 function 

and the fact that 

P K  = e-iKrm 
n 

is the Fourier transform of the electron density operator p ( ~ ) ;  additionally the completeness 
relation If)(fl = 1 was applied. The exact form factor obeys the symmetry relation 
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S*(K, K‘. E )  = S(K’, K, E ) ,  which is due to the invariance with respect to time reversal. 
In order to preserve this symmetry under the conditions of the impulse approximation 
(Eisenberger and Platzman 1970, Platzman and Tzoar 1965. Schattschneider et al 1990) 

eiHt - eiHOt iVre-![Ho.Vll’ e ... - 
2 1  

e - 

we use the fact that S(K, K‘, E )  is invariant with respect to time translations, thus we 
rewrite S ( K ,  K’, E )  

The Hamiltonian of the scattering system is written as H = HO + V, together with the 
impulse approximation and [ P K ,  VI = 0 we obtain for the matrix element 

(i  IeiHo:/2pxe-iHollZe-iHorlzp_xeiH~r/21i), 

Finally, the insertion of a complete system of momentum eigenfunctions [p) of Ho, together 
with 

transforms (4) into 

S(K, K‘. E )  = (ilp - K)(p  - K‘Ii)S(E - f b ( K  + K’)  - f (K2 + KR)Ild3p. (5) 

In a Wannier representation (Madelung 1972) the function a,(r - &) is a wave packet 
localized at the lattice sites FL,,; the functions are orthogonal with respect to different energy 
bands (a, n’) and also to different lattice sites (&, Q). For the matrix elements we then 
have 

s 

The sum over atomic sites FL,, may be split into a sum within the unit cell and a sum over 
all unit cells in the volume. The lattice vector in the z direction, chosen to be perpendicular 
to the surface, is uz 

d/% 
,+.r“”-.r”’+if-g)~ = Nxy c , i ~ - g ) ~  ,+U’’-++ ei(y(t’)-yqar” 

7 T n n = - d / h ,  - R. 
:=K&, 
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where N,,, N is the number of unit cells in the plane, resp. the volume. Finally, we end 
up for the double differential cross section for inelastic scattering from a crystal within the 
impulse approximation with 

h b l e  1. Extinction distance c8 for silicon at a pdmary beam energy of E. = ZGQkeV. 

hld 1 I 1  220 400 422 
c8 [nm] 78.1 95.9 160.7 211.1 

3. Coherent Compton scattering for a two-beam case 

Expression (7) will now be evaluated for a two-beam case and atomic single-particle 3s 
wavefunctions for silicon. The y v )  for the two-beam case are given by 

with the excitation error s and the excitation distance k. For ut' and U:' we have 

with the dimensionless parameter w = s L  characterizing the tilt out of the Bragg condition 
(Reimer 1984). Since under practical conditions the extinction distance t8 in silicon (see 
table 1) far exceeds the lattice constant (Q = 0.542nm) it follows that 

lY(1) - Y(*)I < 191 # 0 

Qjn - Qj,s+ - g' 

and finally 

-+ Q, := k + g  - k,c. 

With this approximation and the relations for y u )  and U?) we obtain an expression for the 
double differential scattering cross section including coherent scattering: 
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where we have introduced the definition 6 = (y( ' )  - y"))d; KO is simply the number of 
atoms in the unit cell and for Kg we get for the case of silicon 

A 
Kg = KO COS [q (h  + k + I ) ] .  

The first and the second part of (8) represent the incoherent scattering from the transmitted 
(0). resp. the Bragg-reflected beam @), and is termed the 'direct term' in what follows; 
the third part arises from the coherent superposition of amplitudes from (0) and (J), and is 
referred to as the 'indirect term'. 

4. Analytical evaluation of the mixed dynamic form factor 

Within the limits of a one-eleclron approximation, the one-particle density mabix in 
momentum space will be discussed for a crystal composed of free atoms at the positions 
I&. For this purpose we take atomic silicon single-particle wavefunctions given in position 
space (Duncanson 1947) 

qnfm(r) = N,NeN~r"'-'e-CrP;"(cosB)e"~. 

Of the occupied p and s states the latter lead to an expression for S(K, K', E )  that can 
be evaluated analytically. It was not possible to find a similar treatment for the p states, 
so calculation of the 3p conhibution would necessitate lengthy numerical integration. We 
plan to perform these calculations in a forthcoming paper. Here we derive an analytical 
expression for the contribution of the 3s states to the indirect term. 

Fourier transformation yields the normalized single-particle wavefunction in the 
momentum representation: 

where n' is the effective principal quantum number whose value is equal to the true quantum 
number for levels up to n = 3 (Duncanson 1947); c is a quantity related to the nuclear 
charge Z and the screening constant U by c = (Z - o) /n ' .  The constant s determines 
the extent of the wavefunction in momentum space and hence the width of the Compton 
profile; for the calculations we chose U = 9.25 so that the resulting direct Compton profile 
fitted the Hartree-Fock profiles given by Biggs (Biggs et al 1975). For 3s electrons (n = 3, 
1 = mi = 0) we obtain 

We will now briefly discuss the analytical evaluation of the integral 

&(K, K',E) = S . p 3 , @ - K ) ~ s m @ - K f ) 6 { E -  i [ p . ( K + K ' ) -  f (KZ+KR)I)d3p 

(10) 
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of ,the atomic scattering factor SAl(K, K', E), for which we will use the abbreviation 3. 
We assume a symme@ic two-beam scattering geometry. i.e. g (K + K') = 0 and therefore 
IKI = JK'I. The results presented below all refer to this kind of scattering geometry (Jonas 
and Schattschneider 1993a b). 

For the case g = 0, which is equivalent to K = K', equation (IO) leads to the result 
for the direct t m .  

with 

2 E  - KZ 
h o  = 2K . 

The integration of the indirect term (g # 0) requires a more detailed discussion. Using 
cylindrical coordinates, choosing the z axis parallel to (K + K'), the 6 function transforms 
into 

where we have introduced E = p - K and defined &o := (2E - K 9 K')/([ K + K' 1). 
Inserting the expression for @ 3 ~ ( p )  into (IO) and performing the ez integration, 3 takes the 
form 

with 

64C6 
5 1 K + K ' l '  A =  

The second factor of the integrand can be split into two parts: 

1 - 2CZ 

+ &? + 2x5; COS @)4 (c2 + 8 2  + (cZ + gz i- + t; + zger COS $)3 ' 

Using the formulae 

and 

derived? (Gradstein and Ryshik 1981) from 

t The given formulae are only valid for D > Ibl. a condition which for our case, as can be easily shown, will 
always be satisfied. 
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we perform the r$ integration, obtaining 

where we have made the substitution y := ~ ~ + ( ~ o + c 2  and used the abbreviations p := -2g2 
and q := g4 + 4g2(cz t t$). To solve the integrals we use the following formulae from 
Gradstein and Ryshik (1981): 

) n > l  
Sk(n - l ) (n  - 2 ) .  . .(n - k)R‘ 

(Zn - 3)(2n - 5 ) .  . . (2n - 2k - 1)(4q - p2)’ 

R := y 2  + p y  + 4. 

Figure 1. Dynamical form factor S(K. K’, E). (a) Direct term S(K. K. E )  compared to the 
indirecl term S(K. K i g .  E) f o r g l , l , l ,  momentum transfer q = 16A-I. (b) Indirect term for 
reflections (1) gl.I.L. (2) g2.1.0, (3) 94.0.0 md (4) 94.2.2. Note the scale c h g e  from (1) to (2). 

A decomposition into partial fractions allows us to apply the formulae to the integral 
immediately, leading finally to the result 
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with 

2 4  2 61 = 4c2g6(2c2 - g') - 8c g (C + f ~ o ) ( 6 ~ ~  + g2) + 32czg4(c2 + ~ ~ J 2  

62 = 2g4(g4 - 6c2g2 + 36c4) + 4g2(g4 - 14c2g2 - 12c4)(c2 + $o) - 16g4(cz + 
63 = 12g2~2(6~2 - g2) + 4g6 + 8g2(c2 + f?,3)(2c2 + 5g2) 

84 = 4[2c4 - Ilg2c2 - 3g4 + g2(c2 + c:o)] 
2 2  8s = 6g - 8c . 

> . m r d  .....*.loon _i .................. ; .................. 

i, -./ 1.015 _. 
- d . l m i . . ~ ;  I ...... \ ............... 

: ,I 4.- i .......... +,i ....... . _ * -  : 

L.02 

,all 

,a, 

W A S  

L 

Ug95 

0.59 

a m  
0.98 

J J .I I 1 I J J .I I 3 I 
w .# 

Figure 2. Expression (13) plotted against the deviation parameter w for various specimen 
thicknesses d. (a) g1,i.i; (b) g1,z.o; (c) 94.0.0; (d)  g 4 . w  

5. Results 

Figure l(a) shows the direct form factor S(K, K ,  E )  compared to the strongest possible 
coherent contribution S(K. K 4- g .  E ) ,  caused by the Bragg reflection gl.1.1. The mixed 
form factors S ( K ,  K + g ,  E )  for Bragg reflections up to g4,2,2 are shown in figure I@); we 
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obtain a rapid decrease in the intensity of the coherent contribution as we change g from 
gt,l,l to g2.2.0. This is obvious from the structure of the integral (10) and the respective 
integrand &&), as well as the fact that, for large g. the shape of the indirect term shows 
only a slow variation as a function of g. The symmetry axis of the indirect term shifts to 
lower energy loss when g is increased; this is caused by the argument of the 6 function 
in (10) causing the integral to be symmetric with respect to an energy-loss value given by 
E = h 2 K .  K'/2m,. 

1,016 "i"-ii\..---i i ..... 1 .......................... 

i 

i 

i 

, 8 , 2  ........ ". ... i i ; ................. ! .................. 

Figwe 3. Expression (13) plolted against the specimen thickness d for various deviation 
parameters w. (a)gt,t.t; (b) s?~,z.D; (c)ga,o.o; (d)ga.z .  

In order to estimate the contribution of the indirect term to the total profile we rewrite 
(8) as 

2% a [ &--a]cos (" - ( h + k + l )  4 
a E a a  ) - 1 J W 2  (1 - 31 (13) 

where and (11 stand for the contribution of the direct and the indirect term, respectivelyt. 
Expression (13) as a function of the deviation parameter w for Bragg reflections up to 

t For the following whmation it is sufficient to take for og and nl the values at the maximum of the respective 
S(K. K'. E). and define og := 1. 
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g4,2,*, is displayed in figure 2. The fact that catches the eye is that the indirect term 
contributes zero for w = 0, a rather simple consequence of (13). Tilting the crystal out of 
the Bragg condition enhances the weight of the coherent part until a maximum is reached; 
this maximum with respect to the modulus of its contribution lies for each g in the vicinity 
of w = & I ,  dependent on d such that wmar approaches w = 1 for a thickness d > &/2. 
The amount of the coherent part as a function of specimen thickness oscillates with a period 
proportional to ~ J W ,  see figure 3. 

6. Conclusion 

From our explicit calculations we find that for sufficiently large reciprocal lattice vectors 
the contribution of the indirect terms for s states is negligibly small. In that case the 
resulting Compton spectrum can be obtained by adding the relevant direct terms. For small 
reciprocal lattice vectors (e.g. Si-1 11) however, the indirect term contributes noticeably to 
the measured signal. As the energy loss spectrum of the indirect term is very similar to that 
of the direct term, the normalized spectra remain practically unchanged. In particular, it can 
be said that when working in a symmetric two-beam scattering geometry, the contributions 
of coherent scattering from 3s electrons-ven when the incident electron beam is not 
exactly parallel-are negligible in electron Compton scattering experimenu. It remains to 
be seen whether the same is m e  for the 3p states. 
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